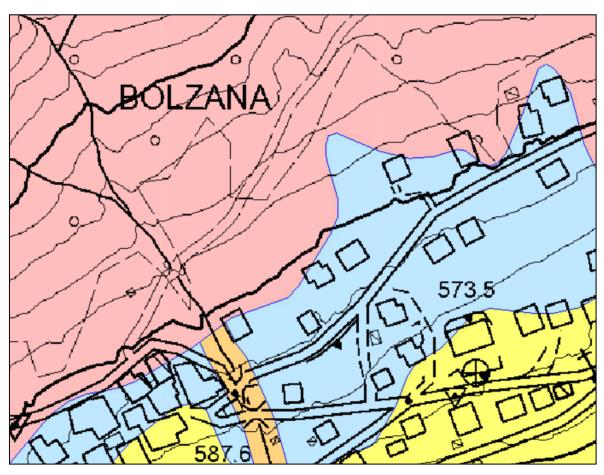
STUDIO DI COMPATIBILITÀ RELATIVO ALLE PP.FF. 1335 – 1334 – 1333 – 1332/1 – P.ED. 782 DEL C.C. DI RAGOLI

Mario Cavattoni

1. PREMESSA

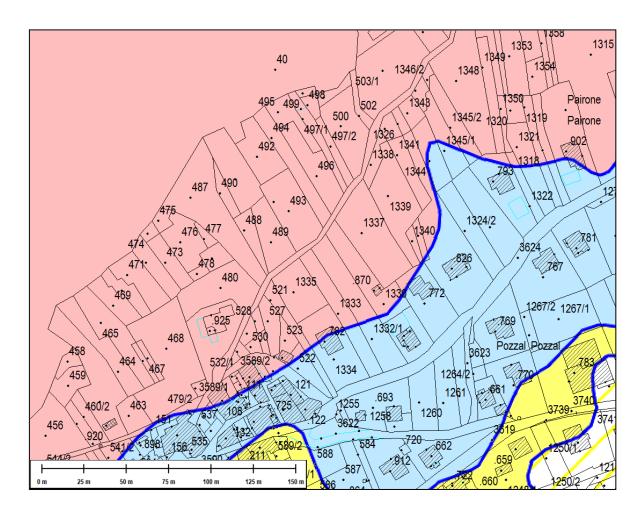

Con delibera n.772 della Giunta Provinciale, del 27 maggio 2017, è stata adottata preliminarmente la **Carta di Sintesi della Pericolosità** e adozione preliminare delle Indicazioni e precisazioni per l'applicazione delle disposizioni concernenti le aree con penalità elevate medie o basse e le aree con altri tipi di penalità.

Nella nuova cartografia parte delle pp.ff. 1335 – 1334 – 1333 – 1332/1 e la p.ed. 782 del C.C. di Ragoli ricadono fra le *aree ad elevata o media penalità* per problemi di caduta massi.

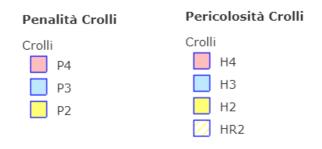
Pericolosità legate a fenomeni torrentizi riguardano solo il limite ovest della p.f. 1335 e della p.ed. 782.

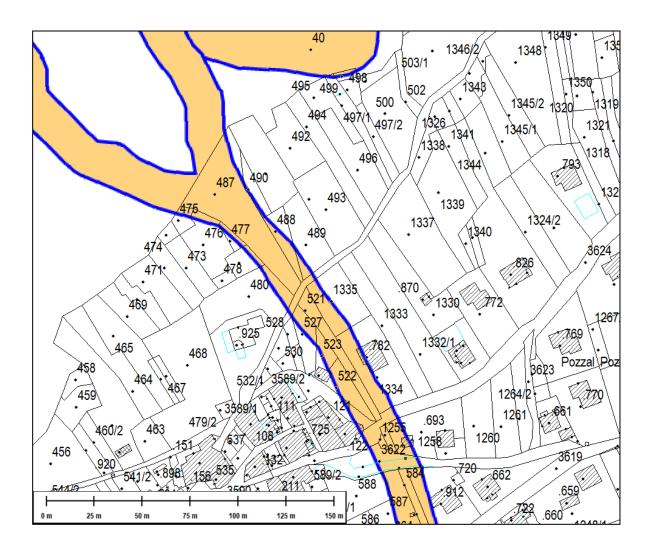
Al fine di verificare il reale grado di pericolo legato al fenomeno di caduta massi si è quindi ritenuto opportuno eseguire uno specifico studio lungo il versante a monte delle particelle di cui sopra.

Per un corretto inquadramento del fenomeno è stato eseguito un sopralluogo lungo il versante per verificare le dimensioni, forma ed ubicazione dei blocchi franati, e le caratteristiche del versante (affioramenti rocciosi - rugosità - grado di compattezza del suolo, copertura vegetale, etc.). Sulla base di questi dati sono state poi fatte diverse centinaia di simulazioni di scoscendimento massi secondo una sezione ricavata dal rilievo Lidar della PAT.

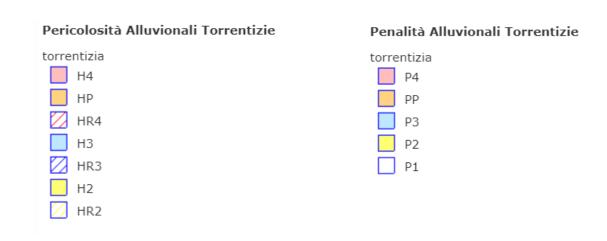


Legenda - CARTA DI SINTESI DELLA PERICOLOSITA'


Classi di Penalità


Con riferimenti alle norme di attuazione del Piano Urbanistico Provinciale (L.P. 27 maggio 2008, n. 5)

	P4 - elevata	art. 15
	PP - potenziale	art. 18
	PR4 - residua da valanga	art. 18
	P3 - media	art. 16
	P2 - bassa	art. 17
	P1 - penalità associata alla presenza di pericolosità trascurabile o assente	art. 18
	AFI - ambiti fluviali di interesse idraulico previsti dal Piano Generale di Utilizzazione delle Acque Pubbliche	art. 14
	IMP - aree riservate a interventi di mitigazione del pericolo	art. 18
	RSS - area di rispetto stazione sismometrica	art. 18
\triangle	stazione sismometrica	



Estratto da Carta di sintesi della pericolosità

Estratto da Carta di sintesi della pericolosità

2. <u>INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO</u>

L'area è ubicata nella periferia nord dell'abitato di Ragoli, nella fascia di versante compresa fra le isoipse 588÷612, al piede di un ripido versante, fittamente boscato e caratterizzato da una morfologia molto articolata per la presenza di piccole pareti rocciose cui si alternano tratti meno acclivi e caratterizzati da un detrito grossolano con una morfologia accidentata in scala ridotta.

Per una migliore comprensione della situazione morfologica locale si allega la corografia tratta dalla *Carta Tecnica* della PAT, una planimetria, due viste prospettica "3D" ed una sezione tratta dal rilievo *Lidar* della PAT (1).

Il substrato roccioso che caratterizza gran parte della porzione superiore del versante è costituito dalla successione sedimentarie del Triassico superiore – Giurassico (2).

La giacitura della stratificazione è a traversopoggio e/o a reggipoggio, quindi favorevole alla stabilità generale del versante, come pure gli altri sistemi di fratturazione che hanno un andamento subverticale o molto inclinato. La generale buona stabilità degli affioramenti rocciosi è confermata anche dal ridotto numero di blocchi di recente crollo rilevati lungo il versante (vedi planimetria con l'ubicazione dei blocchi franati).

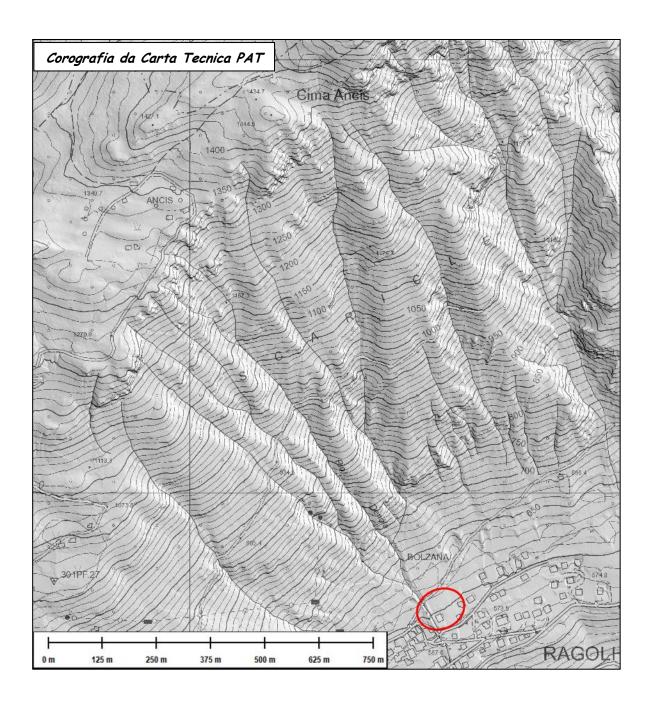
L'innesco dei fenomeni di crollo, che generalmente interessano volumi contenuti, è dovuto principalmente all'azione disgregatrice degli agenti meteorici (geo – disgelo – infiltrazioni idriche) e alle sottospinte operate dall'apparato radicale della fitta vegetazione arbustiva.

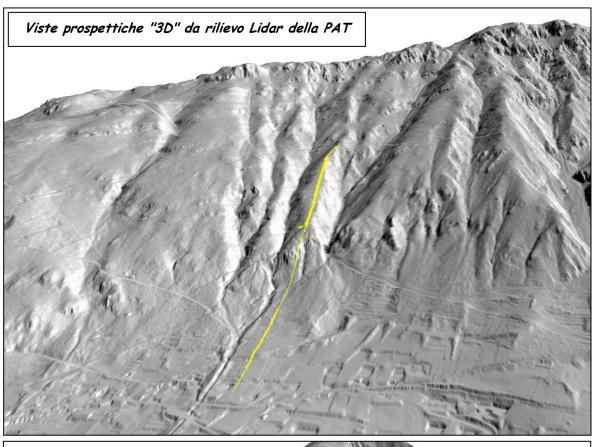
Un'estesa falda detritica poco acclive caratterizza il piede del versante, subito a monte dell'area in esame.

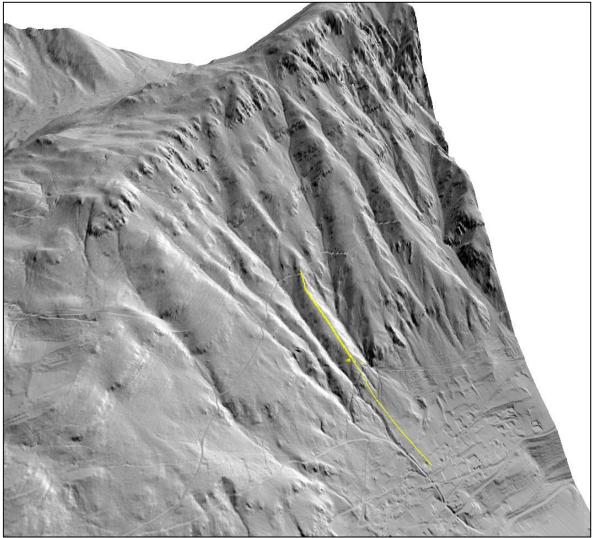
A causa del potenziale rischio legato al fenomeno di caduta massi nell'attuale carta di sintesi geologica del PUP, di cui si allega un estratto, le particelle in esame rientrano fra le aree con penalità gravi o medie per le quali la Normativa riporta:

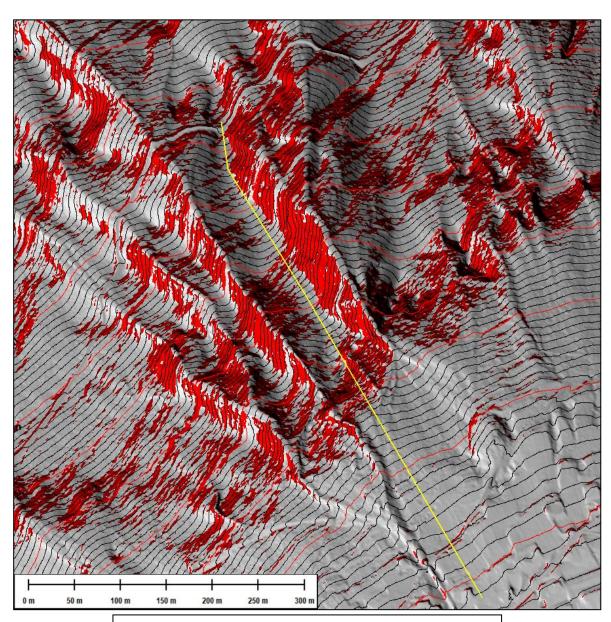
"aree in cui gli aspetti litologici, morfologici idrogeologici e di allagamento richiedono l'esecuzione di studi ed indagini geologici e geotecnici approfonditi per ogni tipo di intervento, estesi alla possibile area di influenza delle opere in progetto".

Nel Piano Generale di Utilizzazione delle Acque Pubbliche (PGUAP) la porzione inferiore zona in esame è attualmente inserita fra le aree a rischio geologico medio (R2) per le quali si legge:

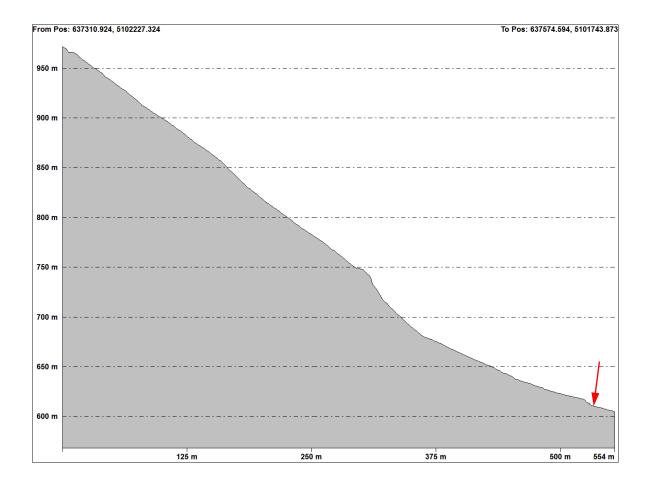

"costituiscono aree a rischio idrogeologico le porzioni di territorio nelle quali sono presenti persone e/o beni esposti agli effetti dannosi o distruttivi di esondazioni, frane o valanghe. Le aree a

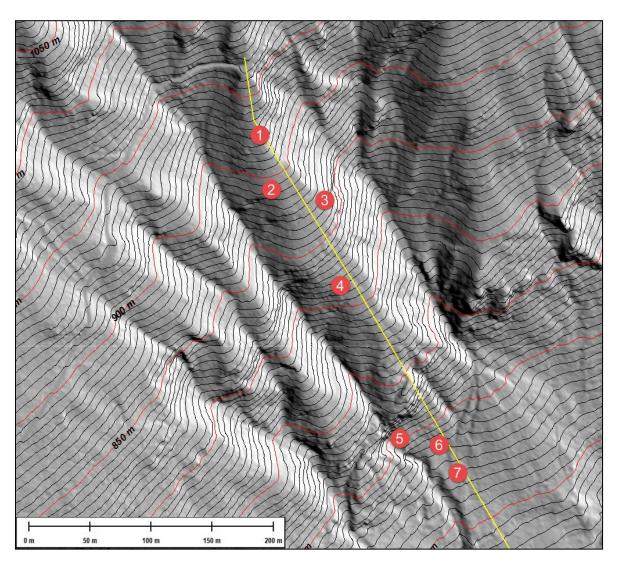

Nella sezione la freccia rossa indica il limite di monte dell'area esaminata.

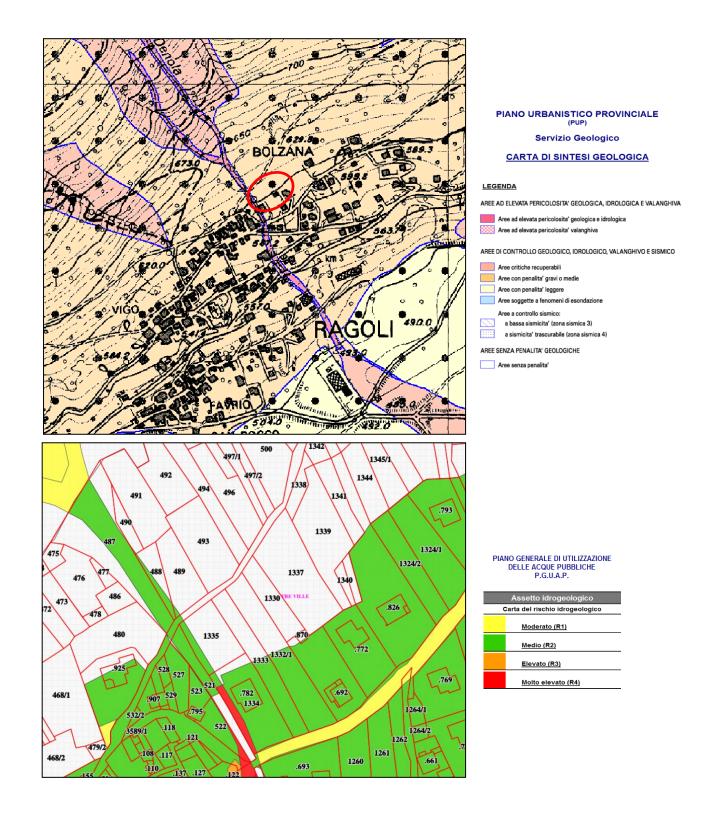

Formazione del Tofino - Membro di Val degli Inferni (calcari micritici scuri selciferi in strati medio-sottili) - Formazione del Tofino - Membro del Torrente Duina (calcari dolomitici neri bituminosi e dolomie in strati medio sottili) - Calcare di Zu - Membro di Tremalzo (calcari micritici e calcari dolomitici grigio-scuri bituminosi in strati medio-spessi) - Calcare di Zu - Membro del Grosté (calcari micritici grigio scuri, marne e argilliti nere, biocalcareniti in strati medio-sottili - Dolomia Principale (dolomie stromatolitiche dolomicriti e doloareniti in strati medio-spessi).


rischio sono suddivise in quattro classi di gravosità crescente (R1, R2, R3, R4) in funzione del livello di pericolosità dell'evento, di possibilità di perdita di vite umane, e del valore dei beni presenti" - (art. 18): "la definizione degli interventi ammissibili nelle aree a rischio geologico medio, contrassegnate R2, e moderato, contrassegnate R1, è demandata ai piani regolatori generali dei comuni, che vi provvedono mediante approfondimenti a scala locale riferiti anche alle possibili alternative di localizzazione delle previsioni urbanistiche nel loro insieme".

Sempre nella cartografia del PGUAP le particelle in esame rientrano fra le aree a bassa pericolosità geologica.

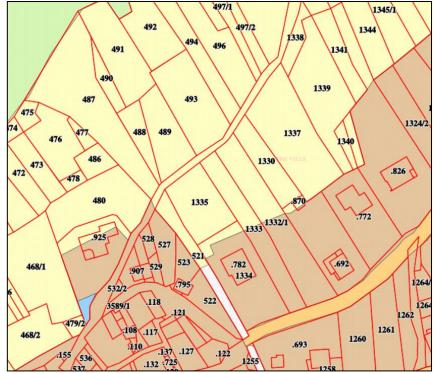






Planimetria con evidenziato in rosso i tratti di versante con pendenza $\beta \ge 43^\circ$, normalmente corrispondenti agli affioramenti rocciosi

n°	descrizione								
1	blocco franato con $V = 0.08 \text{ m}^3$ caratterizzato da molte fratture latenti.								
2	blocco con $V = 0.2 \text{ m}^3$ addossato ad una pianta.								
3	blocco con $V = 0.144 \text{ m}^3$.								
4	inizio del tratto di versante dove prevale la copertura detritica.								
5	$n^{\circ}3$ blocchi con $V \approx 0.12$ m³ in corrispondenza del piccolo tratto debolmente pendente ubicato al piede di una parete (H $\approx 25 \div 30$ m) - (cascata) caratterizzata da una roccia mediamente compatta.								
6	blocco con $V = 0.12 \text{ m}^3$ addossato ad una pianta.								
7	blocco con V = 0.15 m³ addossato ad una pianta.								



PIANO GENERALE DI UTILIZZAZIONE DELLE ACQUE PUBBLICHE P.G.U.A.P. Assetto idrogeologico Carta della pericolosita' idrogeologica

Aree a bassa pericolosità geologica

Aree ad elevata pericolosità
valandhiva

PIANO GENERALE DI UTILIZZAZIONE DELLE ACQUE PUBBLICHE P.G.U.A.P.

3. ANALISI DEL FENOMENO DI CADUTA MASSI

Come si può bel vedere dalla corografia allegata, il versante a monte della zona in esame si estende fino a q. 1400 circa; tuttavia, vista la presenza di profonde incisioni vallive che tendono a "drenare" eventuali massi franati, la possibile "area sorgente" che interessa la zona di studio può essere ristretta alla sola piccola dorsale evidenziata, nella cartografia allegata, dalla traccia della sezione di calcolo, a partire da q. 966 dove abbiamo la strada forestale.

Questo tratto di versante è caratterizzato principalmente dalle rocce appartenenti alla Formazione di Zu, Membro del Grosté, dove abbiamo un'alternanza di calcari micritici e marne e argilliti nere in strati di spessore decimetrico ai quali seguono verso l'alto prevalenti tempestiti carbonatiche.

Come si può vedere dalla documentazione fotografica allegata la stratificazione della roccia è molto fitta e ridotta è la spaziatura degli altri sistemi di discontinuità, per cui mediamente il *volume roccioso unitario* è dell'ordine di pochi dm³.

Nella fascia inferiore della dorsale affiorano le rocce più compatte appartenenti alla Formazione della Dolomia Principale. In ogni caso i massi franati rilevati presentano volumi mediamente inferiori a 0.15÷0.2 m³.

Alla luce di quanto sopra esposto, per quanto riguarda le particelle in esame, il rischio legato al fenomeno di caduta massi appare basso, tenuto conto delle poche situazioni d'instabilità rilevate lungo il versante, dei ridotti volumi in gioco e dell'elevata azione di regimazione sul moto di traslazione dei blocchi dovuta alla morfologia accidentata del pendio e al fitto bosco. A tal proposito si specifica che non sono stati segnalati fenomeni di caduta massi che abbiano interessato le particelle oggetto di studio.

In ogni caso, per completezza di trattazione, e per una più precisa valutazione del reale grado di pericolo, si è ritenuto opportuno eseguire diverse centinaia di verifiche di scoscendimento massi secondo una sezione di calcolo.

Per le simulazioni è stato utilizzato il programma di calcolo *RocFall 6*, edito dalla *RocScience* (Università di Toronto). Questo programma nella valutazione delle traiettorie dei blocchi tiene conto della loro dimensione e della loro forma. È evidente infatti che se il masso viene assimilato ad una sfera nel suo processo di rotolamento lungo un piano inclinato non subisce nessun fenomeno di proiezione. Profondamente diverso è il comportamento di un masso di forma prismatica che, a seguito della rotazione lungo il proprio asse (effetto "spin") subisce proiezioni sempre più accentuate, man mano che aumenta la velocità angolare. È evidente che questo determina una notevole variazione del limite di massimo espandimento dei blocchi in quanto la traslazione avviene per rimbalzi successivi, e non per rotolamento dove ha notevole influenza l'irregolarità del terreno e l'angolo d'attrito al rotolamento.

Il fenomeno di caduta massi è estremamente complesso in quanto intervengono diversi fattori. Per questa ragione il programma *RocFall* 6 consente di eseguire una serie di elaborazioni statistiche che tengono conto delle possibili variazioni che possono riguardare il masso (volume - forma - coefficiente di restituzione normale funzione della velocità del blocco o della massa del blocco) e le caratteristiche del terreno (distribuzione e dimensioni delle irregolarità del terreno - coefficiente di restituzione normale - tangenziale, coefficiente d'attrito di

rotolamento, coefficiente di attrito dinamico). Per consentire l'elaborazione statistica del fenomeno sono state considerate diverse centinaia di crolli, anche se nelle balze rocciose le situazioni d'instabilità sono limitate.

Nelle simulazioni è stata considerata una funzione che lega il *coefficiente di restituzione normale* (R_N) alla velocità del blocco quindi, in ultima analisi, alla sua *massa*. Questo fattore rappresenta una transizione da condizioni quasi elastiche a basse velocità a condizioni altamente anelastiche ad alte velocità d'impatto, quando si manifestano fenomeni di fratturazione della roccia e/o deformazioni del suolo. Questo settaggio consente di ottenere parabole dei massi più realistiche.

Nel calcolo è stata altresì considerata una certa rugosità, variabile in maniera random, sia per quanto riguarda il substrato roccioso che la copertura detritica, come ben evidenziato durante il sopralluogo.

Come si è già avuto modo di dire in precedenza è elevato il fenomeno di frammentazione dei blocchi durante il processo di scoscendimento, a causa della fitta fratturazione latente, per cui i massi che raggiungono la porzione inferiore del versante presentano un volume relativamente contenuto (foto 7-9-10).

In ogni caso, per maggiore sicurezza, si è ritenuto opportuno considerare nelle verifiche blocchi di volumetria variabile: V = 0.02÷0.22 m³. Normalmente i massi di queste dimensioni sono quelli che presentano il massimo "espandimento" in quanto non tendono ad affossarsi nel terreno con gli impatti.

Secondo quanto suggerito dal progetto di norma UNI, relativo alle opere di difesa passiva, il loro dimensionamento deve essere fatto considerando la *velocità di progetto* dei blocchi corrispondente al frattile 95% delle velocità calcolate nelle analisi delle traiettorie, moltiplicata per un determinato fattore di sicurezza che tiene conto dell'affidabilità dei dati, per quanto riguarda i coefficienti di restituzione e la precisione del rilievo topografico.

Analogamente alla velocità dei blocchi, l'altezza di intercettazione di progetto è definita come l'altezza di passaggio dei blocchi rispetto al pendio corrispondente al frattile del 95% delle possibili traiettorie.

In base a quanto sopra esposto, relativamente alla sezione di calcolo, ed in particolare al limite di monte dell'area in esame, vengono forniti i grafici relativi al frattile 95%, sia per quanto riguarda la velocità dei blocchi, l'energia in gioco e l'altezza delle parabole.

Preme specificare che nei grafici delle parabole le "altezze calcolate" fanno riferimento al baricentro del masso.

Per un maggiore approfondimento di quanto sopra si rimanda alla pubblicazione dell'UNI (codice progetto U71030324).

Nelle simulazioni cautelativamente non si è tenuto conto della presenza del fitto bosco in quanto la suo opera di "difesa" potrebbe venir meno in caso d'incendio.

Non considerando la presenza della vegetazione in corrispondenza dei collector, corrispondente al limite di monte dell'area esaminata, le verifiche di scoscendimento massi hanno dato, con riferimento al 95 percentile, i seguenti valori:

altezza parabole (m)	0.48
velocità massi (m/sec)	3.96
energie (kJ)	2.94

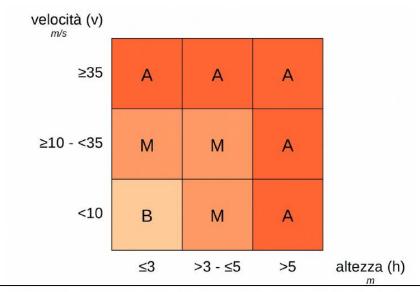
Come era facile aspettarsi in corrispondenza del collector considerato le altezze delle parabole dei massi e le energie in gioco sono molto contenute.

La Provincia Autonoma di Trento ha elaborato *Criteri e metodologie per la redazione e l'aggiornamento della Carta della Pericolosità*.

Per quanto riguarda il fenomeno di caduta massi le grandezze indicatrici utilizzate per attribuire il grado di pericolosità degli eventi sono:

h = altezza di volo delle traiettorie (m);

v = velocita di caduta (m/sec);


f = frequenza di passaggio dei blocchi (n. traiettorie che interessano ciascuna cella del DTM considerato).

Applicando le matrici riportate di seguito ai dati ricavati con le simulazioni, si determina il **grado di pericolosità**.

La soglia di velocita di 35 m/s corrisponde ad un'energia cinetica di circa 3000 kJ per un blocco con volume di 2 m³ (e massa pari a 5200 kg), mentre quella di 10 m/s corrisponde, per la medesima volumetria, ad un'energia cinetica di circa 260 kJ.

L'altezza di 3 m è indicativa di un moto dei blocchi tendenzialmente radente al suolo, mentre quella di 5 m corrisponde all'altezza di un'opera di difesa di dimensioni ordinarie.

La frequenza (valutata sul rilascio di 20 blocchi per cella sorgente) minore o uguale a 20 passaggi (1 passaggio normalizzato) corrisponde ad una situazione nella quale l'evento ha una probabilità di accadimento *bassa*, quella compresa tra 20 e 200 passaggi (10 passaggi normalizzati) corrisponde a situazioni nelle quali l'evento ha una probabilità di accadimento *mediobassa*, quella tra 200 e 400 passaggi (20 passaggi normalizzati) probabilità *media*, quella superiore o uguale a 400 passaggi individua situazioni con probabilità di accadimento *medio-alta*.

Matrice per valutare l'Intensità (Magnitudo) confrontando i dati di velocità di caduta ${f v}$ ed altezza di volo ${f h}$.

intensità						
Α	media	media	elevata	elevata		
М	bassa	media	media	elevata		
В	bassa	bassa	media	media		
	<20 <1	≥20 - <200 ≥1 - <10	≥200 - <400 ≥10 - <20	≥400 ≥20	frequenza f norm	

Matrice per determinare il grado di pericolosità confrontando le Intensità (Magnitudo) con le frequenze dei passaggi dei blocchi **f**. La dizione "f_norm" in ascissa, indica il dato di frequenza normalizzato al numero di lanci per cella sorgente.

Relativamente alla soglia della velocità si ritiene più corretto far riferimento alle energie in gioco in quanto più direttamente collegate alle dimensioni dei massi considerati. Vi è da sottolineare inoltre che la soglia relativa al numero di passaggi è strettamente correlata al numero dei massi considerati per ogni *cella sorgente*. É evidente infatti che più alto è il numero considerato maggiore sarà anche il numero dei passaggi, e viceversa.

Più appropriato appare invece considerare la *percentuale* dei massi che possono interessare una determinata zona, in riferimento al numero di crolli contemplati.

Altre metodologie di calcolo per l'analisi del rischio legato al fenomeno di caduta massi fanno riferimento alla percentuale. In particolare il metodo *Matterock* pone i seguenti limiti relativamente alla *probabilità di accadimento*:

bassa: 0% ÷ 2% di arrivo dei massi media: 2% ÷ 20% di arrivo dei massi elevata: 20% ÷ 100% di arrivo dei massi

Nell'analisi di questo tipo si considera normalmente un notevole numero di crolli che non è necessariamente legato ad un'elevata probabilità di accadimento, soprattutto nel nostro caso, ma alla necessità di un'elaborazione statistica dell'evento, tenuto conto delle numerose variabili che intervengono in questo tipo di fenomeno (3).

Per la particella in esame la valutazione del *grado di pericolo* è stata fatta considerando le soglie di *probabilità di accadimento* relative al metodo di *Matterock*, tenuto anche conto che nell'elaborazione non è stato impiegato il programma (Rockyfor3D) utilizzato dal *Servizio Geologico* della *PAT*.

Nel nostro caso, relativamente al collector considerato abbiamo:

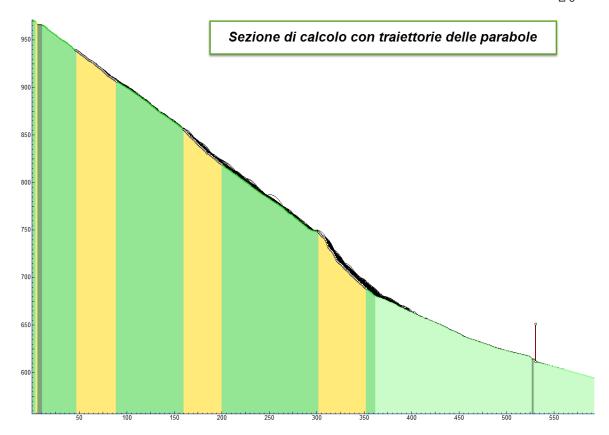
arrivo dei massi (%)	1.57
probabilità accadimento	bassa

In base a quanto sopra esposto, relativamente al fenomeno di caduta massi, non considerando la presenza della vegetazione che costituisce un valido ostacolo all'espandimento di eventuali massi franati, per la porzione di monte dell'area in esame si determina un grado di pericolosità basso, mentre per la porzione inferiore la pericolosità può essere considerata trascurabile o assenta.

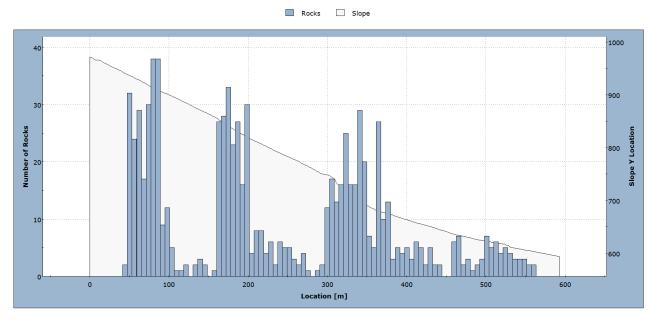
Attualmente la valutazione del rischio viene fatta sovrapponendo la classe di uso del suolo con la classe di pericolo, utilizzando le seguenti tabelle tratte dall'allegato della Delibera della Giunta provinciale n. 1984 – di data 22 settembre 2006 "Metodologia per l'aggiornamento della cartografia del rischio idrogeologico del Piano Generale di Utilizzazione delle Acque Pubbliche"

³) Le principali variabili che intervengono nel fenomeno di caduta massi sono: morfologia locale, forma dei massi, caratteristiche di compattezza dei diversi tratti del versante, presenza di vegetazione o non, presenza del terreno ghiacciato, dimensioni dei massi e quindi diversi coefficienti di restituzione all'urto, irregolarità del terreno che favoriscono o ostacolano il fenomeno di rotazione dei blocchi, etc..

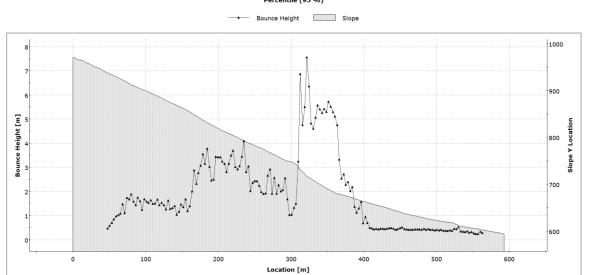
Nel nostro caso la sovrapposizione è tra *classe di pericolo bassa* e *classe dell'uso del suolo ABI (area residenziale)* e pertanto si ottiene un valore del *Rischio* di *0.40*, corrispondente alla *classe di rischio medio (R2)*.


Classi di uso del suol	o	ABI	VIAPRI	FERR	CAM	PROD	RIC	DEP	SCI	VIASEC	AGRI	BOS	IMP
Classi di pericolo	PESI	1	0,93	0,93	0,9	0,57	0,45	0,4	0,33	0,48	0,23	0,15	0,02
Elevato	1	1	0,93	0,93	0.90	0,57	0,45	0,4	0,33	0,48	0,23	0,15	0,02
Medio	0,8	0,8	0,74	0,74	0,72	0,46	0,36	0,32	0,26	0,38	0,18	0,12	0,01
Basso	0,4	0,4	0,37	0,37	0,36	0,23	0,18	0,16	0,13	0,19	0,09	0,06	0,01

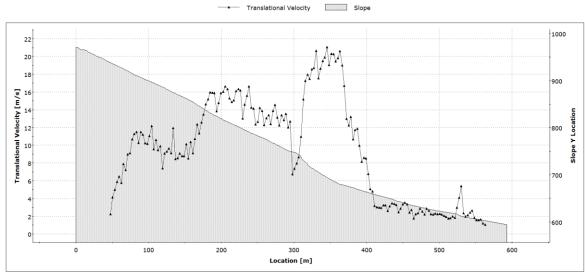
Il range dei valori in relazione ai diversi livelli di rischio con le relative colorazioni è il seguente.


CLASSE DI RISCHIO	RANGE		DESCRIZIONE
R0	>=0	<=0,1	Rischio trascurabile
R1	>0,1	<=0,2	Rischio moderato
R2	>0,2	<=0,5	Rischio medio
R3	>0,5	<=0,9	Rischio elevato
R4	>0,9	<=1	Rischio molto elevato

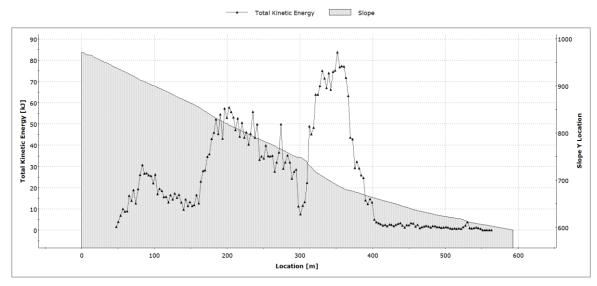
Considerando la presenza della vegetazione (rada) nessun masso raggiunge l'area in esame, a conferma di quanto emerso durante il sopralluogo e da quanto riferito dagli abitanti della zona.



Distribution of Rock Path End Locations

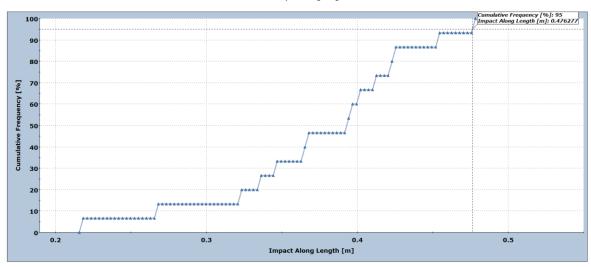

Total number of rock paths: 829

Bounce Height on Slope Percentile (95 %)


Total number of rock paths: 829

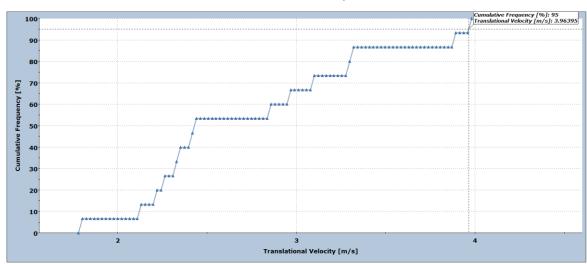
Translational Velocity on Slope Percentile (95 %)

Total number of rock paths: 829


Total Kinetic Energy on Slope Percentile (95 %)

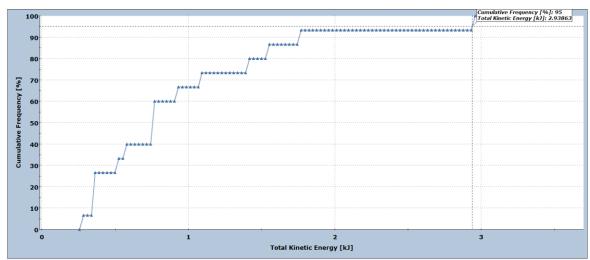
Total number of rock paths: 829

Impact Along Length on Collector 1


Impact Along Length

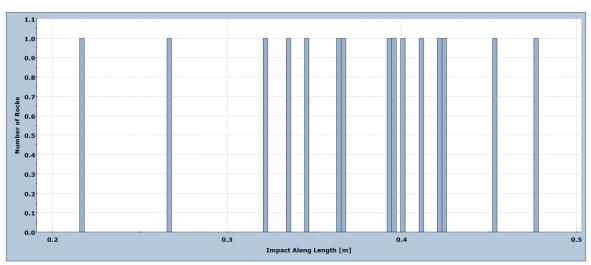
Total number of rocks on Collector 1: 15 Impact Along Length: min = 0.216989, max = 0.476934

Translational Velocity on Collector 1


Translational Velocity

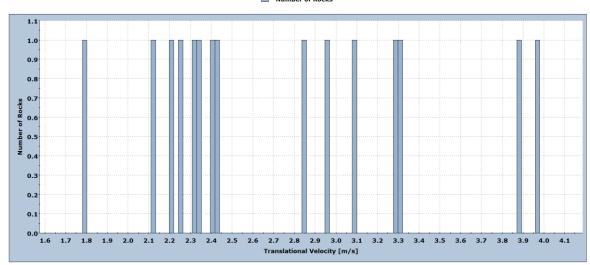
Total number of rocks on Collector 1: 15 Translational Velocity: min = 1.79133, max = 3.96945

Total Kinetic Energy on Collector 1


─▲ Total Kinetic Energy

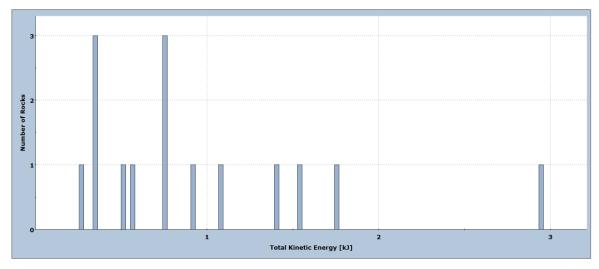
Total number of rocks on Collector 1: 15
Total Kinetic Energy: min = 0.269718, max = 2.94539

Impact Along Length on Collector 1


Number of Rocks

Total number of rocks on Collector 1: 15
Impact Along Length: min = 0.216989, max = 0.476934

Translational Velocity on Collector 1


Number of Rocks

Total number of rocks on Collector 1: 15
Translational Velocity: min = 1.79133, max = 3.96945

Total Kinetic Energy on Collector 1

Number of Rocks

RocFall Analysis Information

Project Summary

File Name Sezione n.1
File Version 6.011

Date Created 13/04/2015, 10:57:10

Project Settings

General Settings:

Engine Rigid Body
Units Metric (m, kg, kJ)

Rock Throw Mode Number of rocks controlled by seeder

Use Tangential CRSP Damping Yes

Engine Conditions:

 Maximum time per rock
 2s

 Maximum steps per rock
 10000

 Normal velocity cutoff
 0.1m/s

 Stopped velocity cutoff
 0.1m/s

 Maximum timestep
 0.01s

 Switch Velocity
 -1e-009m/s

Random Number Generation:

Sampling Method Monte-Carlo

Random Seed Pseudo-random seed: 12345234

Slope Geometry

V	ertex	Х	Υ	31	30	951.2	62	60	928.949	93	91	905.451	124	122	884.229
1		0	971.45	32	31	950.48	63	61	928.478	94	92	904.652	125	123	883.452
2		1	970.889	33	32	949.83	64	62	927.997	95	93	903.974	126	124	882.588
3		2	970.347	34	33	949.309	65	63	927.354	96	94	903.285	127	125	881.731
4		3	969.804	35	34	948.743	66	64	926.555	97	95	902.644	128	126	880.845
5		4	969.215	36	35	948.156	67	65	925.563	98	96	902.11	129	127	879.968
6		5	967.413	37	36	947.483	68	66	924.572	99	97	901.558	130	128	879.303
7		6	966.179	38	37	946.762	69	67	923.77	100	98	900.977	131	129	878.51
8		7	965.914	39	38	945.97	70	68	922.995	101	99	900.353	132	130	877.662
9		8	965.842	40	39	945.235	71	69	922.164	102	100	899.69	133	131	876.785
10	0	9	965.792	41	40	944.508	72	70	921.415	103	101	899.112	134	132	875.888
11	1	10	965.708	42	41	943.553	73	71	920.697	104	102	898.508	135	133	875.106
12	2	11	965.524	43	42	942.355	74	72	920.027	105	103	897.819	136	134	874.47
13	3	12	965.165	44	43	941.198	75	73	919.362	106	104	897.101	137	135	873.743
14	4	13	964.631	45	44	940.522	76	74	918.315	107	105	896.355	138	136	872.971
15	5	14	964.051	46	45	939.97	77	75	917.348	108	106	895.657	139	137	872.378
16	6	15	963.271	47	46	939.352	78	76	916.353	109	107	894.951	140	138	871.914
17	7	16	962.144	48	47	938.771	79	77	915.43	110	108	894.237	141	139	871.335
18	В	17	961.093	49	48	938.107	80	78	914.537	111	109	893.498	142	140	870.667
19	9	18	960.331	50	49	937.269	81	79	913.64	112	110	892.769	143	141	869.94
20	0	19	959.57	51	50	936.523	82	80	912.625	113	111	892.114	144	142	869.177
2	1	20	958.683	52	51	935.742	83	81	911.84	114	112	891.478	145	143	868.496
22	2	21	957.882	53	52	934.938	84	82	911.31	115	113	890.753	146	144	867.836
23	3	22	957.285	54	52.095	934.864	85	83	910.797	116	114	889.937	147	145	867.017
24	4	23	956.688	55	53	934.139	86	84	910.106	117	115	889.13	148	146	866.28
2	5	24	956.017	56	54	933.531	87	85	909.482	118	116	888.29	149	147	865.629
26	6	25	955.26	57	55	932.815	88	86	908.932	119	117	887.617	150	148	864.872
27	7	26	954.399	58	56	932.086	89	87	908.193	120	118	887.037	151	149	864.14
28	В	27	953.532	59	57	931.204	90	88	907.287	121	119	886.418	152	150	863.392
29	9	28	952.7	60	58	930.337	91	89	906.574	122	120	885.747	153	151	862.715
30	0	29	951.905	61	59	929.664	92	90	906.064	123	121	885.025	154	152	862.028

155	153	861.349	225	222	802.842	295	292	750.986	365	362	680.551	435	432	649.477
156	154	860.519	226	223	802.131	296	293	750.396	366	363	679.926	436	433	648.995
157	155	859.694	227	224	801.376	297	294	749.783	367	364	679.456	437	434	648.468
158	156	858.782	228	225	800.628	298	295	749.353	368	365	679.111	438	435	647.844
159	157	857.931	229	226	800.006	299	296	749.187	369	366	678.875	439	436	647.43
160	158	857.287	230	227	799.383	300	297	748.805	370	367	678.608	440	437	646.971
161	159	856.603	231	228	798.619	301	298	748.652	371	368	678.215	441	438	646.417
162	160	855.637	232	229	797.978	302	299	748.436	372	369	677.837	442	439	645.775
							300			370			440	
163	161	854.833	233	230	797.013	303		748.332	373		677.434	443		645.14
164	162	853.862	234	231	795.969	304	301	747.918	374	371	677.011	444	441	644.669
165	163	852.813	235	232	795.218	305	302	747.337	375	372	676.526	445	442	644.202
166	164	851.647	236	233	794.574	306	303	746.457	376	373	676.042	446	443	643.746
167	165	850.458	237	234	793.772	307	304	745.49	377	374	675.651	447	444	643.487
168	166	849.341	238	235	793.005	308	305	744.321	378	375	675.215	448	445	643.169
169	167	848.198	239	236	792.337	309	306	743.207	379	376	674.759	449	446	642.783
170	168	847.338	240	237	791.777	310	307	742.385	380	377	674.264	450	447	642.375
171	169	846.45	241	238	790.998	311	308	741.682	381	378	673.937	451	448	641.884
172	170	845.663	242	239	790.142	312	309	740.341	382	379	673.685	452	449	641.252
173	171	844.852	243	240	789.363	313	310	738.203	383	380	673.324	453	450	640.726
174	172	843.883	244	241	788.632	314	311	734.458	384	381	672.769	454	451	640.392
175	173	842.728	245	242	787.95	315	312	731.877	385	382	672.262	455	452	639.813
176	174	841.73	246	243	787.309	316	313	730.509	386	383	671.707	456	453	639.116
177	175	840.765	247	244	786.756	317	314	729.375	387	384	671.067	457	454	638.304
178	176	839.601	248	245	786.116	318	315	728.291	388	385	670.406	458	455	637.702
179	177	838.578	249	246	785.455	319	316	727.225	389	386	669.87	459	456	637.29
180	178	837.623	250	247	784.777	320	317	725.535	390	387	669.365	460	457	636.959
181	179	836.854	251	248	784.102	321	318	723.992	391	388	668.922	461	458	636.689
182	180	836.08	252	249	783.496	322	319	721.828	392	389	668.51	462	459	636.316
183	181	835.151	253	250	782.783	323	320	719.747	393	390	668.066	463	460	635.85
184	182	833.987	254	251	782.174	324	321	718.054	394	391	667.616	464	461	635.498
185	183	832.93	255	252	781.459	325	322	716.875	395	392	667.178	465	462	635.15
186	184	831.716	256	253	780.825	326	323	715.865	396	393	666.636	466	463	634.783
187	185	830.817	257	254	780.236	327	324	714.94	397	394	666.068	467	464	634.421
188	186	830.081	258	255	779.568	328	325	714.197	398	395	665.605	468	465	634.264
189	187	829.433	259	256	778.893	329	326	713.522	399	396	665.11	469	466	633.919
190	188	828.739	260	257	778.262	330	327	712.344	400	397	664.548	470	467	633.607
							328			398				
191	189	827.925	261	258	777.652	331		710.939	401		664.068	471	468	633.358
192	190	827.185	262	259	777.004	332	329	709.88	402	399	663.667	472	469	633.013
193	191	826.395	263	260	776.223	333	330	708.929	403	400	663.185	473	470	632.69
194	192	825.574	264	261	775.536	334	331	708.176	404	401	662.828	474	471	632.36
195	193	824.933	265	262	774.857	335	332	707.358	405	402	662.364	475	472	631.855
196	194	824.244	266	263	774.259	336	333	706.389	406	403	661.851	476	473	631.458
197	195	823.245	267	264	773.564	337	334	705.267	407	404	661.447	477	474	631.123
198	196	822.346	268	265	772.649	338	335	704.013	408	405	660.957	478	475	630.779
199	197	821.407	269	266	771.732	339	336	702.912	409	406	660.491	479	476	630.466
200	198	820.576	270	267	770.739	340	337	702.12	410	407	660.143	480	477	630.148
201	199	819.83	271	268	769.833	341	338	701.374	411	408	659.651	481	478	629.801
202	200	819.041	272	269	768.834	342	339	700.567	412	409	659.1	482	479	629.525
203	201	818.204	273	270	767.895	343	340	699.514	413	410	658.651	483	480	629.294
204	202	817.399	274	271	767.205	344	341	698.728	414	411	658.316	484	481	628.998
205	203	816.338	275	272	766.853	345	342	697.685	415	412	657.857	485	482	628.581
206	204	815.489	276	273	766.523	346	343	696.669	416	413	657.192	486	483	628.099
		814.898	277	274										627.527
207	204.9				765.745	347	344	695.727	417	414	656.772	487	484	
208	205	814.834	278	275	764.804	348	345	694.833	418	415	656.451	488	485	626.966
209	206	814.2	279	276	763.789	349	346	693.811	419	416	656.141	489	486	626.715
210	207	813.545	280	277	763.063	350	347	693.082	420	417	655.748	490	487	626.506
211	208	812.835	281	278	762.366	351	348	692.406	421	418	655.258	491	488	626.239
212	209	812.103	282	279	761.599	352	349	691.24	422	419	654.904	492	489	625.85
213	210	811.437	283	280	760.862	353	350	689.981	423	420	654.586	493	490	625.5
214	211	810.766	284	281	760.072	354	351	689.262	424	421	654.209	494	491	625.214
215	212	810.001	285	282	759.142	355	352	688.615	425	422	653.771	495	492	624.961
216	213	809.237	286	283	758.211	356	353	687.812	426	423	653.215	496	493	624.717
217	214	808.662	287	284	757.392	357	354	686.967	427	424	652.824	497	494	624.426
218	215	808.019	288	285	756.617	358	355	686.24	428	425	652.489	498	495	624.132
219	216	807.433	289	286	755.84	359	356	685.545	429	426	651.969	499	496	623.853
220	217	806.65	290	287	754.965	360	357	684.72	430	427	651.465	500	497	623.594
221	218	805.704	291	288	754.31	361	358	683.846	430	428	651.164	501	498	623.326
222	219	804.817	292	289	754.31	362	359		431	429		502	499	623.053
								683.115			650.768 650.351			
223	220	804.121	293	290	752.333	363	360	682.334	433	430	650.351	503	500	622.792
224	221	803.486	294	291	751.576	364	361	681.401	434	431	649.967	504	501	622.552

505	5 502	622.281	516	513	619.626	527	524	616.92	538	536	609.852	549	548	606.517
506	503	622.035	517	514	619.426	528	525	616.112	539	537	609.592	550	549	606.239
507	7 504	621.763	518	515	619.218	529	526	614.912	540	538	609.333	551	551	605.748
508	3 505	621.483	519	516	618.964	530	527	613.975	541	539	609.027	552	552	605.552
509	506	621.237	520	517	618.721	531	528.984	613.843	542	540	608.782	553	553	605.313
510	507	620.992	521	518	618.467	532	530	611.867	543	541	608.517	554	554	605.084
511	508	620.722	522	519	618.194	533	531	611.325	544	542	608.247	555	593	594
512	509	620.494	523	520	617.943	534	532	610.971	545	543	607.976			
513	510	620.285	524	521	617.737	535	533	610.627	546	544	607.68			
514	511	620.082	525	522	617.481	536	534	610.328	547	545	607.382			
515	5 512	619.857	526	523	617.213	537	535	610.068	548	547	606.805			

Slope Material Assignment

Material	From Vertex	To Vertex
Detrito medio	1	5
Roccia alterata	5	7
Strada bianca - piazzale 1	7	12
Detrito medio	12	48
Roccia alterata	48	91
Detrito medio	91	162
Roccia alterata	162	202
Detrito medio	202	305
Roccia alterata	305	355
Detrito medio	355	365
Detrito Fine	365	530
Strada bianca - piazzale	530	531
Detrito Fine	531	555

Material Properties

Roccia alterata

"Roccia alterata" Properties

Color

Mean Distribution Std.Dev. Rel. Min Rel. Max

 Normal Restitution
 0.35
 None

 Tangential Restitution
 0.85
 None

 Dynamic Friction
 0.58
 None

 Rolling Friction
 0.4
 None

 Slope Roughness Spacing
 1
 Normal

"Roccia alterata" Advanced Properties

Forest and Vegetation Damping Disabled Scarring Disabled Viscoplastic Damping Disabled

Detrito Fine

"Detrito Fine" Properties

Color

Mean Distribution Std.Dev. Rel. Min Rel. Max

 Normal Restitution
 0.3
 None

 Tangential Restitution
 0.66
 None

 Dynamic Friction
 0.56
 None

 Rolling Friction
 0.55
 None

"Detrito Fine" Advanced Properties

Forest and Vegetation Damping Disabled Scarring Disabled Viscoplastic Damping Disabled

Detrito medio

"Detrito medio" Properties

Color

Mean Distribution Std.Dev. Rel. Min Rel. Max

Normal Restitution 0.3 None Tangential Restitution 0.7 Dynamic Friction 0.56 None Rolling Friction 0.6 None

Slope Roughness Spacing 1 Normal 0.2 0.6 0.6 Slope Roughness Amplitude 0 0.2 Normal 0.6 0.6

"Detrito medio" Advanced Properties

Forest and Vegetation Damping Disabled Scarring Disabled Viscoplastic Damping Disabled

Strada bianca - piazzale

"Strada bianca - piazzale" Properties

Color

Mean Distribution Std.Dev. Rel. Min Rel. Max

Normal Restitution 0.35 None Tangential Restitution 0.85 None Dynamic Friction 0.557 None Rolling Friction 0.65 None

"Strada bianca - piazzale" Advanced Properties

Forest and Vegetation Damping Disabled Scarring Disabled Viscoplastic Damping Disabled

Seeders

Seeder 1

Seeder Properties

Name Seeder 1

Seeder 1 (46.271, 939.301), (47.271, 938.72), (48.271, 938.056), (49.271, 937.218), (50.271, 936.472), (51.271, 935.691), (52.271, 934.887), (52.366, 934.813), (53.271, 934.088), (54.271, 933.48), (55.271, 932.764), (56.271, 932.035), (57.271, 931.153), (58.271, 930.286), (59.271, 929.613), (60.271, 928.898), (61.271, 928.427), (62.271, 927.946), (63.271, 927.303), (64.271, 926.504), (65.271, 925.512), (66.271, 924.521), (67.271, 923.719), (68.271, 922.944), (69.271, 922.113), (70.271, 921.364), (71.271, 920.646), (72.271, 919.976), (73.271, 919.311), (74.271, 918.64), (75.271, 917.297), (76.271, 916.302), (77.271, 915.379), (78.271, 914.486), (79.271, 913.589), (80.271, 912.574), (81.271, 911.789), (82.271, 911.259), (83.271, 910.746), (84.271, 910.055), (85.271, 909.431), (86.271, 908.881), (87.271, 908.142), (88.271, 907.236), (89.271, 906.523) Location

Rocks to Throw

Number of Rocks 300 Overall Rock Types massi

Initial	Conditions

		Mean	Distribution	Std.Dev.	Rel. Min	Rel. Max	
٧	forizontal /elocity m/s)	0	None				
٧	retical relocity m/s)	0	None				
R	Rotational 'elocity (°/s)	0	None				
R	nitial Rotation °/s)	0	Uniform		0	360	

Seeder 2

Seeder Properties

Seeder 2 Name

Location

(160.06, 855.692), (161.06, 854.888), (162.06, 853.917), (163.06, 852.868), (164.06, 851.702), (165.06, 850.513), (166.06, 849.396), (167.06, 848.253), (168.06, 847.393), (169.06, 846.505), (170.06, 845.718), (171.06, 844.907), (172.06, 843.938), (173.06, 842.783), (174.06, 841.785), (175.06, 840.82), (176.06, 839.656), (177.06, 838.633), (178.06, 837.678), (179.06, 836.909), (180.06, 836.135), (181.06, 835.206), (182.06, 834.042), (183.06, 832.985), (184.06, 831.771), (185.06, 830.872), (186.06, 830.136), (187.06, 829.488), (188.06, 828.794), (189.06, 827.98), (190.06, 827.24), (191.06, 826.45), (192.06, 825.629), (193.06, 824.988), (194.06, 824.299), (195.06, 823.3), (196.06, 822.401), (197.06, 821.462), (198.06, 820.631), (199.06, 819.885), (200.06, 819.096)

Rocks to Throw

Number of 300 Overall Rocks Rock Types massi

Initial Conditions

	Initial Conditions						
	Mean	Distribution	Std.Dev.	Rel. Min	Rel. Max		
Horizontal Velocity (m/s)	0	None					
Vertical Velocity (m/s)	0	None					
Rotational Velocity (°/s)	0	None					
Initial Rotation (°/s)	0	Uniform		0	360		

Seeder 3

Seeder Properties

Name Seeder 3

Location

Horizontal Velocity

(m/s) Vertical Velocity

(m/s)Rotational Velocity (°/s) 0

Initial

Rotation

302.32, 747.315), (303.32, 746.435), (304.32, 745.468), (305.32, 744.299), (306.32, 743.185), (307.32, 742.363), (308.32, 741.66), (309.32, 740.319), (310.32, 738.181), (311.32, 734.436), (312.32, 731.855), (313.32, 730.487), (314.32, 729.353), (315.32, 728.269), (316.32, 727.203), (317.32, 725.513), (318.32, 723.97), (319.32, 721.806), (320.32, 719.725), (321.32, 718.032), (322.32, 716.853), (323.32, 715.843), (324.32, 714.918), (325.32, 714.175), (326.32, 713.5), (327.32, 712.322), (328.32, 710.917), (329.32, 709.858), (330.32, 708.907), (331.32, 708.154), (332.32, 707.336), (333.32, 706.367), (334.32, 705.245), (335.32, 703.991), (336.32, 702.89), (337.32, 702.089), (338.32, 701.352), (339.32, 700.545), (340.32, 699.492), (341.32, 698.706), (342.32, 697.663), (343.32, 696.647), (344.32, 695.705), (345.32, 694.811), (346.32, 693.789), (347.32, 693.06), (348.32, 692.384), (349.32, 691.218), (350.32, 689.959), (351.32, 689.24), (352.32, 688.593)

None

None

None

Uniform

Rocks to Throw

Initial Conditions

Number of 300 Overall Rocks Rock Types massi

Mean

Distribution Std.Dev. Rel. Min Rel. Max

0

360

Rock Types

Properties

Name massi Color

Smooth Shapes Super Ellipse⁴ (2:3), Super Ellipse⁴ (1:2)

Custom Polygon 1, Custom Polygon 2, Custom Polygon 3, Custom Polygon 4

	Mean	Distribution	Std.Dev.	Rel. Min	Rel. Max
Mass (kg)	100	Uniform		50	450
Density (kg/m³)	2500	None			

Custom Shapes

Custom Polygon 1 Custom Polygon 2 Custom Polygon 3 Custom Polygon 4 Name Custom Polygon 1
Exact Size False Custom Polygon 2 Custom Polygon 3 Custom Polygon 4 Exact Size False Exact Size False Exact Size False Vertex Vertex X Vertex Vertex X Vertex 1 134.00 -157.00 Vertex 1 341.00 -242.00 Vertex 2 331.00 -159.00 Vertex 1 160.00 -104.00 Vertex 1 1.30 -1.13 157.00 -215.00 Vertex 2 1.36 -1.75 Vertex 2 139.00 -167.00 Vertex 3 212.00 -254.00 Vertex 3 260.00 -113.00 Vertex 3 192.00 -223.00 Vertex 3 1.96 -2.58 Vertex 4 258.00 -280.00 Vertex 4 275.00 -280.00 Vertex 4 2.58 -2.95 305.00 -253.00 Vertex 5 118.00 -202.00 Vertex 5 365.00 -255.00 Vertex 5 2.80 -2.83 Vertex 6 319.00 -204.00 Vertex 6 151.00 -219.00 Vertex 6 316.00 -101.00 Vertex 6 2.81 -2.43 Vertex 7 288.00 -166.00 Vertex 7 198.00 -236.00 Vertex 8 245.00 -131.00 Vertex 7 2.36 -1.62 Vertex 8 1.88 -1.04 Vertex 9 202.00 -125.00 Vertex 10 168.00 -123.00 Vertex 9 1.47 -0.88

4. CONCLUSIONI

Il rilievo fatto lungo il versante ha evidenziato poche situazioni d'instabilità, come rari sono i massi di recente crollo rilevati.

Le verifiche di scoscendimento massi fatte, non considerando la presenza della vegetazione, hanno evidenziato che, relativamente alla porzione di monte dell'area in esame, la probabilità di accadimento è bassa, come bassa è l'altezza delle parabole e l'energia in gioco, da cui si determina un **grado di pericolosità basso** adottando i *criteri e la metodologia per la redazione e l'aggiornamento delle carte della pericolosità (art. 10, comma 5, l.p. 1 luglio 2011, n.9)*.

Il rischio potrà comunque essere facilmente eliminato realizzando un piccolo vallo-tomo o una barriera al limite superiore della proprietà.

Considerando la presenza della vegetazione (rada) nessun masso raggiunge l'area in esame, a conferma di quanto emerso durante il sopralluogo e da quanto riferito dagli abitanti della zona.

Trento, giugno 2019

<u>Foto n°1</u>: versante fittamente boscato a monte dell'area in esame. <u>Foto n°2</u>: roccia molto fratturata (Calcare di Zu) affiorante lungo la strada forestale a q. 967.

<u>Foto n°3</u>: roccia molto fratturata presente nel tratto superiore del crinale. <u>Foto n°4</u>: fitto bosco nel tratto medio-superiore del crinale.

<u>Foto n°5</u>: blocco ($V \approx 0.2 \text{ m}^3$) relativo al punto n°2. <u>Foto n°6</u>: blocco ($V \approx 0.1.4 \text{ m}^3$) relativo al punto n°3.

<u>Foto n°7</u>: blocchi franati ($V \approx 0.12 \text{ m}^3$) presenti a valle della cascata (punto n°5). <u>Foto n°8</u>: roccia dolomitica compatta in corrispondenza della cascata (punto n°5).

<u>Foto n°9</u>: blocco franato ($V \approx 0.12 \text{ m}^3$) - (punto n°6). <u>Foto n°10</u>: blocco franato ($V \approx 0.15 \text{ m}^3$) - (punto n°7).

